Description (specifications) for AOMIP models:


Vertical coordinates

code type # of levels min spacing max spacing
AWI z 33 10m 356m
GSFC sigma 20 0.00125 0.2
ICMMG z 33 10m 500m
IOS z 29 10m 290m
LANL z 40 10m 250m
LU z 29 10m 290m
NERSC layer 26    
NPS z 30 20m 200m
NYU layer 11 ~ 0.5m * ~ 500m
POL z 26 5m 500m
RAS z 16 10m 1000m
RCO z 59 3m 200m
UCL z 31 10m 500m
UW z 21 10m 790m

* formulated in layers, depth spacing can be less than 1m or up to 5000m (max depth)

Horizontal coordinates

code type # of nodes min spacing max spacing domain
AWI B, rotated spherical  = 41310 25.8km 27.8km 50N Atl to Bering Str
GSFC  ?, rotated spherical  ? 0.7° 0.9° 16S Atl to Bering Str
ICMMG spherical+bipolar 140 x 180 35 km 1 ° Atl.+ Arctic
IOS B, rotated spherical

91 x 67 = 6097

0.5° 55km GINS to  Bering Str
LANL B, general curvilinear 900 x 600 = 54000 9 km 44 km global
LU B, rotated spherical

105 x 112=11760

0.5° 55km 50N Atl to  Bering Str
NERSC B(ice),C(ocean) 196 x 360 22.2km 270km global
NPS B, rotated spherical 384 x 304  = 116736 1/6° 18.5km 50N Atl to Bering Str
NYU C, rotated spherical 60 x 60 = 3600 1.0° 111km to 30° from NorthPole
POL B, rotated spherical 120 x 129 = 15489 30km 300km global
RAS A, spherical  finite element 35 x 49 = 1715 1.0° 111km 65N Atl to Bering Str
RCO B, rotated spherical 152 x 113 0.5° 55km 50N to Aleutian inc Bering Sea
UCL B(ice),C(ocean) curvilinear 142 x 149 = 27118 47 km 222km global
UW B, rotated spherical 130 x 102 = 13260 ~ 40km ~ 40km Arctic + GINS

Time step

code types ocean momentum Dt ocean tracer Dt sea ice Dt
AWI LF 900s 900s 900s
GSFC LF ? ? ?
ICMMG split 14400s 14400s 10800s
IOS LF + F + PC 43200s * 43200s 43200s
LANL LF + F 1800s 1800s 1800s + 15s
LU LF + PC + F 21600s * 21600s 21600s
NERSC filtered LF 1600s 1600s 1600s**
NPS LF + F 1200s 1200s 7200s
NYU filtered LF 7200s + 1200s 7200s 7200s
POL LF+Asselin+EE+IE 1440s + 239s 43200s 43200s
RAS IE + EE 7200s 7200s 7200s w/ 120 substeps
RCO LF+EB 600s + 10s 600s 15s
UCL LF + F 5760s 5760s 17280s
UW LF 720s 720s 5400s

LF=leapfrog, PC=predict-correct, F=forward, IE=implicit Euler, EE=explicit Euler
*IOS: actual Dt is 12 hr. "apparent" Dt for momentum is 900s after Bryan (1984).

**NERSC: sea ice velocitites are updated daily as a steady state balance of forces,while ice scalar properties are advected with Dt=1600s


Upper surface & benthic

code upper surface tides? benthic layer?
AWI rigid lid, streamfunction no no
GSFC explicit free surface no yes, not well resolved
ICMMG rigid lid, streamfunction no  
IOS rigid lid, streamfunction parametric yes
LANL implicit free surface no no
LU rigid lid, streamfunction no yes
NERSC explicit free surface no no
NPS implicit free surface no no
NYU explicit free surface no  
POL explicit nonlinear free surface no Campin and Goosse (1999)
RAS linear / implicit sea level no no
RCO explicit free surface no no
UCL free surface no parametric
UW rigid lid, streamfunction no  


Open boundaries

code locations condition transports (Sv)
AWI N Atlantic only radiation none
GSFC Bering, S Atlantic radiation Bering 0.8 in
ICMMG Bering, Atlantic Neumann Bering 0.8 in
IOS Bering, Baffin Bay, GINSea Dirchlet + Neumann

Bering 0.8 in, Baffin 1.0 out, GINS 0.2 in

LANL global domain n/a n/a
LU Bering, N Atlantic Dirchlet + Neumann Bering 1.0 in
NERSC global domain` n/a n/a
NPS all closed + restoring restoring none
NYU N Atlantic, N Pacific restoring transports not specified
POL global domain    
RAS Bering, M'Clure, Nares, Denmark radiation T&S, specified V Bering 0.8 in, M'Clure 0.8 out, Nares, 0.7 out *
RCO N Atlantic only radiation (Stevens, 1990) none
UCL global domain n/a n/a
UW Bering, Davis, Denmark, Faero-Shetland Zhang et al 1997 Bering 0.8 in, Atlantic 0.8 out

* RAS: also Norwegian 6.0 in, Denmark 5.4415 out - to compensate river inflow.


Bottom topography

code source modifications min depth max depth
AWI IBCAO deepened some channels 30 m 4800 m
GSFC TerrainBase Global DTM extensive smoothing 50 m 6000 m
ICMMG IBCAO deepened some channels 50 m 5500 m
IOS IBCAO + ETOPO5 widened Nares Strait 30 m 4345 m
LANL IBCAO + Smith&Sandwell pointwise changes 20 m 5500 m
LU IBCAO + ETOPO5 widened some straits 30 m 4345 m
NERSC GEBCO modified some sill depths 50m 7505m
NPS IBCAO + ETOPO5 widened some straits 45 m 4300 m
NYU IBCAO + ETOPO5 none 20 m 5000 m
POL IBCAO + ETOPO5 some 15m 5500m
RAS Polyakov smoothing, opened straits 25 m 4000 m
RCO ETOPO5 some 6m 5000m
UCL ETOPO5 pointwise 20 m 5500 m
UW IBCAO + ETOPO5 ? 75 m ?

Note: all z-level models use full-cell depth representation.

Equation of state

code source
AWI 3rd oder polynomial fit to Knudsen
GSFC Mellor, 1991
ICMMG Gill 1982
LANL UNESCO 1981, Jackett and McDougal 1995
NERSC Brydon, Sun and Bleck`1999
NPS UNESCO, Parsons, 1995
NYU Brydon, Bleck, and Sun, 1999
POL UNESCO 1983, Jackett and McDougal 1995
RAS Gill 1982, Appendix 3.
RCO 3rd order polynomial fit to UNESCO formula (Bryan and Cox, 1972)
UCL UNESCO 1983, Jackett and McDougal 1995
UW Bryan and Cox, 1972


code vertical horizontal bottom
AWI constant, 10 cm2/s biharmonic, A4=0.5e-21 cm4/s quadratic, 1.2e-3
ICMMG constant, 50 cm2/s neptune linear
IOS neptune, up to 1 m2/s neptune, L=3.5e3 m, A2=4.e4 m2/s quadratic, 1.2e-3
LANL 10 x tracer KPP biharmonic, A4=1.e20 cm4/s quadratic, 1.22e-3
LU neptune, 300 cm2/s neptune, L=3.5e3 m, A2=5e8 cm2/s quadratic, 1.2e-3
NERSC 10 x background tracer laplacian quadratic
NPS Pacanowski & Philander biharmonic, A4=1.e-19 cm4/s  
NYU interlayer, 1.e-5 m/s2 laplacian, propto grid space quadratic
POL KPP + constant 10cm2/s neptune + Smagorinsky none
RAS Pacanowski & Philander laplacian, A2=2.e4 m2/s quadratic, 1.2e-3
RCO k-epsilon (Meier, 2001) laplacian 5.e3 m2/s quadratic 1.25e-3
UCL 1.5L turbulence scheme laplacian, A2=4.e4 m2/s linear, 115day
UW constant, 0.05 cm2/s laplacian, A2=1.2e8 cm2/s none


code vertical lateral convection
AWI none (see advection) none (see advection) complete
ICMMG Bryan & Lewis, 1979 laplacian, 1000 to 500 m2/s based on Richardson no.
IOS internal wave & double diffusion (Merryfield et al, 1999) laplacian, to 500 m2/s complete
LANL KPP, no double diffusion isopycnal-GM, K=2400 m2/s high diff., 0.1 m2/s
LU as IOS laplacian, 5e4 complete
NERSC stability dependent + gravity entrainment laplacian, prop to grid space inflating first layer if denser
NPS Pacanowski & Philander biharmonic, 4.e18 cm4/s Semtner, 1974
NYU McDougal & Dewar, 1998 laplacian, propto grid space Holland and Jenkins, 2001
POL KPP + Gargett & Holloway 1984 isopycnal-GM complete
RAS Pacanowski & Philander, .1 cm2/s upwind-strmline, bkgnd 50 m2/s high diff., 0.02 m2/s
RCO k-epsilon (Meier, 2001) laplacian 5.e2 m2/s k-epsilon (Meier, 2001)
UCL 1.5L turbulence scheme isopycnal-GM, K=2000 m2/s enhanced diffusion
UW constant, 0.05 cm2/s laplacian, 0.4e6 cm2/s ?

GSFC sigma models: diffusivity tensor rotation ?

NYU: Layer thickness diffusion is used. Diffusivity is 0.01 m/s times horizontal grid spacing.
Convection based on available potential energy ()

Advection methods

code ocean tracers ocean momentum sea ice & snow
AWI FCT (Gerdes, Koberle, Willebrand, 1991) centered difference corrected upstream (Smolarkiewicz, 1983)
GSFC Lin et al 1994 ? ?
OCMMG linear FE upstream viscosity upstream + remap
IOS modified Prather (1986) centered difference modified Prather (Merryfield & Holloway, 2002)
LANL 3rd order upwind centered difference incremental remapping (Lipscomb & Hunke, 2004)
LU modified Prather SOM centered difference modified Prather SOM
NERSC MPDATA (Smolarkiwicz, 1984) PV-conserving (Sadourny, 1975) 3rd order WENO (Jiang & Shu, 1996)
NPS centered difference centered difference centered difference
NYU MPDATA (Smolarkiwicz, 1984) PV-conserving (Sadourny) MPDATA. (Smolarkiwicz, 1984)
POL modified Prather (1986) centered difference modified Prather (1986)
RAS upwind streamline FE scheme upwind streamline
RCO modified QUICK (Webb et al., 1998) modified QUICK (Webb et al., 1998) upstream
UCL centered 2nd order centered 2nd order 2nd order moments (Prather, 1986)
UW centered difference centered difference centered difference



code method
AWI restore only top layer S, 180d
GSFC only at open boundaries and the Mediterranean
ICMMG Bering Str T & S
IOS none
LANL top layer S, 180 d, first 11 years only
LU none
NERSC none
NPS T and S are restored, 120d & 365d
NYU restore top layer S and open boundaries
POL none in AOMIP domain
RAS restore top layer S, 180d
RCO none
UCL none (within AOMIP sub-domain)
UW T and S are restored, variously



code number explicit unguaged, how? volume or virtual salt? temperature total annual
AWI ?   salt sink    
GSFC 86 yes, randomly salt sink    
ICMMG 13 proportionally among 13 rivers volume no 3156 km3/a
IOS 13 yes, separately along american, nordic and siberian coasts salt sink no 3156 km3/a
LANL 14 Arctic, 46 global no salt sink no 2300 km3/a
LU ? ? salt sink no ?
NERSC   continental runoff assigned to coast salt sink no 47000 km3/a
NPS 9 no salt sink yes 2012 km3/a
NYU none no restoring    
POL S restore along coasts   volume no ~1.5 Sv (global)
RAS 8   volume    
RCO 19 yes, proportionally volume no 3156 km3/a
UCL global   volume    
UW ?   salt sink    

data sources-- AWI: AOMIP GSFC: Pocklington, RasmussonMo P-E data IOS: Prange (per AOMIP)
NPS: P.Becker + Canadian NYU: N/A RAS: AOMIP UW: "AOMIP"

UCL: Milliman and Heade (1983), Russek and Miller (1990), Van Der Leeden, Troise and Todd (1990), Weatherly and Walsh (1996), Jacobs et al. (1992)

Cryosphere dynamics

code variables ice dynamics
AWI area fractions in 7 thickness bins viscous plastic
GSFC area & thickness general viscous
ICMMG area fractions in 5 thickness bins elastic-viscous-plastic
IOS area, thickness viscous plastic
LANL area fractions in 5 thickness bins*, ice energy, snow energy elastic-viscous-plastic
LU area, thickness viscous plastic
NERSC area & thickness, age viscous plastic
NPS area & thickness viscous plastic
NYU area & thickness, age cavitating fluid
POL snow & ice area, volume, heat & age elastic-viscous-plastic
RAS ice and snow mass in 8 thickness bins** elastic-viscous-plastic
RCO area & thickness elastic-viscous-plastic
UCL area & thickness, energy, brine viscous plastic
UW area & thickness, ice enthalpy, distrib? viscous plastic

* LANL bin boundaries: .6445, 1.3914, 2.4702, 4.5673, 9.3338 m
** RAS bin boundaries: .1, .3, .7, 1.2, 2.0, 4.0, 6.0, 9.0 m

Cryosphere thermo

code ice T profile ice conductivity ice salinity snow T profile snow conductivity
AWI linear ? 0 linear ?
GSFC ( layers ?) ? 5 ppt (constant ?)  
ICMMG 4 layers 2.03 W/m/K function linear 0.3 W/m/K
IOS linear 2.04 W/m/K 4 ppt linear 0.31 W/m/K
LANL 4 layers 2.03 W/m/K function linear 0.3 W/m/K
LU linear 2.04 W/m/K 4 ppt linear 0.31 W/m/K
NERSC linear 2.04 W/m/K 6 ppt linear 0.31 W/m/K
NPS linear ? ? no  
NYU linear ? 0 linear  
POL parabolic 2.03 W/m/K 4 psu parabolic 0.22 W/m/K
RAS linear 2.04 W/m/K 4 ppt linear 0.31 W/m/K
RCO Semtner's 2-layer model 2.0 W/m/K 4 ppt linear 0.3 W/m/K
UCL 2 layers 2.03 W/m/K + sgs* 4 ppt linear 0.22 W/m/K
UW (no profile ?) ? 4 ppt (no profile ?) 0.31 W/m/K

Air - sea exchange

code heat exchg moisture exchg momentum transfer ocean mixed layer?
AWI       none
GSFC bulk bulk   turbulence scheme
ICMMG bulk bulk bulk integral Ri criterion
IOS 1.2e-3 1.5e-3 assigned assigned
LANL bulk bulk bulk KPP
LU bulk bulk assigned none
NERSC * * * bulk (Gaspar, 1988)
NPS       none
NYU bulk (Oberhuber, 1993) bulk (Oberhuber, 1993) bulk (Oberhuber, 1993) bulk (Gaspar, 1988)
POL bulk (Large and Pond 1982) bulk (Large and Pond 1982) bulk (Large and Pond 1981) KPP
RAS       25m, diff=100 cm2/s
RCO bulk (Large and Pond 1982) bulk (Large and Pond 1982) bulk (Large and Pond 1981) included in k-epsilon
UCL bulk bulk bulk 1.5L turbulence scheme
UW       bulk (Zhang et al, 1998)

* NERSC: NCEP/NCAR daily fluxes are used. If the model surface state differs from the NCEP/NCAR surface state, the fluxes are modified according to Bentsen and Drange (2000).

Air - cryo exchange

code heat exchg moisture exchg momentum transfer
ICMMG bulk bulk bulk
IOS 1.2e-3 1.5e-3  
LANL 1.2e-3 1.5e-3 1.1+.04*wind
LU 1.2e-3 1.5e-3  
NERSC * * *
POL bulk (Parkinson and Washington, 1979) bulk (Parkinson and Washington, 1979) bulk (Large and Pond, 1981)
RCO bulk bulk bulk
UCL bulk bulk quadratic

* NERSC: NCEP/NCAR daily fluxes are used. If the model surface state differs from the NCEP/NCAR surface state, the fluxes are modified according to Bentsen and Drange (2000).

Ocean - ice exchange

code ocean-ice heat exchg ocean-ice FW exchg ocean-ice momentum exchg
ICMMG same as LANL same as LANL same as LANL
IOS linear in ocean T - freezing T virtual salt flux, ice at 4 ppt quadratic, Cd=5.5e-3
LANL * virtual salt flux, ice at 4 ppt quadratic, Cd=5.5e-3
LU linear in ocean T - freezing T virtual salt flux, ice at 4 ppt quadratic, Cd=5.5e-3
NERSC linear in To and Tf (Maykut and McPhee, 1995) virtual salt flux, ice at 6ppt quadratic, Cd=5.5e-3
NPS     quadratic, Cd=5.5e-3
POL linear in To and Tf (McPhee, 1992) explicit freshwater and salt quadratic, Cd=5.5e-3
RAS     quadratic, Cd=5.5e-3
RCO bulk (Omstedt & Wettlaufer, 1992) salt rejection, freshwater flux, ice at 4 ppt quadratic, Cd=3.5e-3
UCL linear in ocean T - freezing T salt rejection, freshwater flux quadratic, Cd=5.5e-3

* LANL: heat, salt: ice formation in ocean (frazil) maintains temperature at or above salinity-dependent freezing temperature, up to maximum = linear in ocean T - freezing T, coef 0.575


code SW form albedo SW penetration LW form
GSFC Parkinson and Washington, 1979     separate up & down, PW
ICMMG daily averaged O=.1, MI=.68, I=.7, MS=.77, S=.81 yes Rosati & Miyakoda, 1988
IOS daily averaged O=.1, MI=.5, I=.6, MS=.7, S=.8 yes Rosati & Miyakoda, 1988
LANL   O=.1, MI=.68, I=.7, MS=.77, S=.81 yes Rosati & Miyakoda, 1988
LU daily averaged O=.1, MI=.5, I=.6, MS=.7, S=.8 yes Rosati & Miyakoda, 1988
NERSC daily averaged .03<O<.45, MI<=.6, I<=.7, MS=.75, S=.85 yes *
NPS       Zhang et al, 1999
NYU daily averaged O=.1, MI=.4, I=.5, MS=.7, S=.8   Holland, 1993
POL daily averaged, Zillman (1972), Shine (1984)] O=.1, MI=.5, I=.6, MS=.7, S=.8 yes net (Berliand & Berliand, 1952)
RAS daily averaged O=.1, MI=.5, I=.65, MS=.75, S=.82 yes  
RCO daily cycle, (Bodin, 1979; Laevastu, 1960) O=Fresnel, MI=0.3, I=0.7, MS=0.77, S=0.87 yes Maykut and Church (1973)
UCL daily averaged O=.1, MI=.5, I=.6, MS=.7, S=.8 yes separate up & down

when 5 broadband albedo are used, "O"=ocean, "MI"=melting ice, "I"=ice, "MS"=melting snow, "S"=snow

emissivities: O=.97, I=.98, S=.98 (except NYU: I=.97, S=.99)
* NERSC: similar procedure as for the turbulent air-sea fluxes


Beckmann, A., and R. D\"oscher, A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581-591, 1997.

Bentsen, M. and H. Drange, 2000: Parameterizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In RegClim General Technical Report No. 4, Norwegian Institute for Air Research, Kjeller, Norway, 149-158.

Berliand, M. E., and T. G. Berliand, 1952: Measurement of the effective radiation of the Earth with varying cloud amounts, Izv. Akad. Nauk SSSR Ser. Geofiz., 1, 1952.

Bodin, S., A predictive numerical model of the atmospheric boundary layer based on the turbulent energy equation, Report Meteorology and Climatology, SMHI, Norrk\"oping, Sweden, 13, 139 pp, 1979.

Bryan, K., and M.D. Cox, An approximate equation of state for numerical models of ocean circulation, J. Phys. Oceanogr., 2, 510-514, 1972.

Bryan, K., J. K. Dukowicz and R. D. Smith. 1999: On the Mixing Coefficient in the Parameterization of Bolus Velocity. J. Phys. Oceanogr., Vol. 29, No. 9, pp. 2442-2456.

Brydon, D., S. Sun, and R. Bleck, 1999: A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geophys. Res., 104(C1), 1537-1540.

Campin, J-M and H. Goosse, 1999: Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate, Tellus, 51A, 412-430.

Gargett, AE and G. Holloway. 1984: Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42, 15-27.

Gaspar, JPO, vol. 18, 1988, p. 161-180.

Holland, D.M., and A. Jenkins, 2001: Adaptation of an isopycniccoordinate ocean model for the study of Circulation beneath ice shelves.Mon. Wea. Rev., 129, 1905-1927.

Holland, D.M., 2001: An impact of sub-grid-scale ice-ocean dynamics on sea-ice cover. J. Climate, 14(7), 1585-1601.

Holland, D.M., L.A. Mysak, D.K. Manak, and J. M. Oberhuber, 1993: A sensitivity study of a dynamic-thermodynamic sea-ice model. J. Geophys.Res., 98, 2561-2586.

Holloway, G. and T. Sou, 2002: Has Arctic sea ice rapidly thinned?J. Climate, 15, 1691-1701.

Jackett-McDougall, 1995 JTECH, Vol.12, pp 381-389.

Jiang, G.-S. and C.-W. Shu, 1996: Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202-228.

Kalnay, E. et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77(3), 437-471.

Karcher, M. J., Gerdes, R., Kauker, F., Koeberle, C.(2002). Arcticwarming - Evolution and Spreading of the 1990s warm event in the Nordic Seas and the Arctic Ocean, Journal of Geophysical Research, in press.

Koeberle, C., Gerdes, R. (2002). Mechanisms determining the variability of Arctic sea ice conditions and export, Journal of Climate, in revision.

Large, W. G. and S. Pond. 1981: Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr., Vol. 11, No. 3, pp. 324-336.

Large, W. G. and S. Pond. 1982: Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr., Vol. 12, No. 5, pp. 464-482.

Lipscomb, W. H. and E. C. Hunke, Monthly Weather Review 132, 1341-1354, 2004

Laevastu T (1960) Factors affecting the temperature of the surface layer of the sea. Commentat Phys Math 25:8-134

McDougal & Dewar (1998), vol 28, p.1458-1480.

McPhee, M. G., 1992: Turbulent heat flux in the upper ocean under sea ice, J. Geophys. Res., 97, C4, 5365-5379.

Maykut, G.A., and P. Church, Radiation climate of Barrow, Alaska, 1962-1966, J. Appl. Meteorol., 12, 620-628, 1973.

Maykut, G. A. and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100(C12), 24,691-24,703.

Meier, H.E.M., On the parameterization of mixing in three-dimensional Baltic Sea models, J. Geophys. Res., 106, 30997-31016, 2001.

Merryfield, W. J., G. Holloway and A. E. Gargett, 1999: A global ocean model with double-diffusive mixing. J. Phys. Oceanogr., 29, 1124-1142.

Merryfield, W. J., and G. Holloway, 2002: Application of an accurate advection algorithm to sea-ice modeling. Ocean Modelling, 5, 1-15.

MICOM ocean model is described in a chapter by R. Bleck entitled"Ocean Modeling in Isopycnic Coordinates", in the book "Ocean Modeling and Parameterization", NATO, ASI, 1998, p. 423-448, edited by E. Chassingnet and J. Verron.

Oberhuber, 1993, JPO, vol. 23, p. 808-829.

Omstedt A, Wettlaufer JS (1992) Ice growth and oceanic heat flux, models and measurements. J Geophys Res 97:9383-9390

Paluskiewicz, T. and R. D. Romea, 1997: A one-dimensional model for the parameterization of deep convection in the ocean, Dynamics of Atmospheres and Oceans, 26, 95-130.

Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice, J. Geophys. Res., 84, C1, 311-337.

Prather, M. C., 1986: Numerical advection by conservation of second-order moments, J. Geophys. Res., 91, D6, 6671-6681.

Shine, K. P., 1984: Parameterization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo, Quart. J. Roy. Meteor. Soc., 110, 465, 747-764.

Stevens, D.P., On open boundary conditions for three dimensional primitive equation ocean circulation models, Geophys. Astrophys. Fluid Dynamics, 51, 103-133, 1990.

Webb, D.J., B.A. de Cuevas and C.S. Richmond, Improved advection schemes for ocean models, J. Atmos. Oceanic Technol., 15, 1171-1187, 1998.

Zhang, J., W.D. Hibler, M. Steele, and D.A. Rothrock: Arctic ice-ocean modeling with and without climate restoring, J. Phys. Oceanogr., 28, 191-217, 1998.

Zhang, J., D.A. Rothrock, and M. Steele: Recent changes in Arctic Sea ice: The interplay between ice dynamics and thermodynamics, J. Climate, 13, 3099-3114, 2000.

Zillmann, J.W., 1972: A study of some aspects of the radiation and the heat budgets of the southern hemisphere oceans. Meteorol. Stud. 26 Bur. Meteorol. Dep. of the Interior, Canberra, Australia, 562 pp.

33 41310 900 1515.
20 ? ? ?
29 6097 43200 4.0
40 540900 1800 *20% 2404.
30 116736 1200 2918.
11 3600 7200 5.5
16 1715 3600 7.6
21 13260 720 387.